Self Residual Attention Network for Deep Face Recognition
نویسندگان
چکیده
منابع مشابه
Attention Modeling for Face Recognition via Deep Learning
Face recognition is an important area of research in cognitive science and machine learning. This is the first paper utilizing deep learning techniques to model human’s attention for face recognition. In our attention model based on bilinear deep belief network (DBDN), the discriminant information is maximized in a frame of simulating the human visual cortex and human’s perception. Comparative ...
متن کاملFace Recognition based on Deep Neural Network
In modern life, we see more techniques of biometric features recognition have been used to our surrounding life, especially the applications in telephones and laptops. These biometric recognition techniques contain face recognition, fingerprint recognition and iris recognition. Our work focuses on the face recognition problem and uses a deep learning method, convolutional neural network, to sol...
متن کاملPose-Robust Face Recognition via Deep Residual Equivariant Mapping
Face recognition achieves exceptional success thanks to the emergence of deep learning. However, many contemporary face recognition models still perform relatively poor in processing profile faces compared to frontal faces. A key reason is that the number of frontal and profile training faces are highly imbalanced there are extensively more frontal training samples compared to profile ones. In ...
متن کاملNeural Network Based Supervised Self Organizing Maps for Face Recognition
The word biometrics refers to the use of physiological or biological characteristics of human to recognize and verify the identity of an individual. Face is one of the human biometrics for passive identification with uniqueness and stability. In this manuscript we present a new face based biometric system based on neural networks supervised self organizing maps (SOM). We name our method named S...
متن کاملDeep Face Recognition
The goal of this paper is face recognition – from either a single photograph or from a set of faces tracked in a video. Recent progress in this area has been due to two factors: (i) end to end learning for the task using convolutional neural networks (CNNs), and (ii) the availability of very large scale training datasets. We make two contributions: first, we show how a very large scale dataset ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2913205